Главная / Физиология человека / Возбудимые ткани / Биоэлектрические явления

История изучения биоэлектрических явлений

Зарождение учения о «животном электричестве», т. е. об биоэлектрических явлениях, возникающих в живых тканях, относится ко второй половине XVIII века. Вскоре после открытия лейденской банки было показано, что некоторые рыбы (электрический скат, электрический угорь) обездвиживают свою добычу, поражая ее электричексим разрядом большой силы. Тогда же Дж. Пристли высказал предположение, что пространение нервного импульса представляет собой течение вдоль нерва «электрической жидкости», а Бертолон пытался построить теорию медицины, объясняя возникновение болезней избытком и недостатком в организме этой жидкости.

Попытка последовательной разработки учения о «животном электричестве» сделана Л. Гальвани в его известном «Трактате о силах электричества при движении» (1791). Занимаясь изучением физиологического влияния разрядов электрической машины, а также атмосферного электричества во время грозовых разрядов, Гальвани в своих опытах использовал препарат задних лапок лягушки, соединенных с позвоночником. Подвешивая этот препарат не медном крючке к железным перилам балкона, он обратил внимание, что когда лапки лягушки раскачивались ветром, то их мышцы сокращались при каждом прикосновении к перилам. На основании этого Гальвани пришел к выводу, что подергивания лапок были вызваны «животные электричеством», зарождающимся в спинном мозгу лягушки и передаваемым по металлическим проводникам (крючку и перилам балкона) к мышцам лапки.

Опыты Гальвани повторил А. Вольта (1792) и установил, что описанные Гальвани явления нельзя считать обусловленными «животным электричеством»; в опытах Гальвани источником тока был не спинной мозг лягушка, а цепь, образованная из разнородных металлов — меди и железа. В ответ га возражения Вольта Гальвани произвел новыи опыт, уже без участии металлов. Он показал, что если с задних конечностей лягушки удалить кожу, затем перерезать седалищный нерв у места выхода его корешков из спинного мозга и отпрепарировать нерв вдоль бедра до голени, то при набрасывании нерва на обнаженные мышцы голени они сокращаются. О. Дюбуа-Реймон назвал этот опыт «истинным основным опытом нервно-мышечной физиологии».

С изобретением в 20-х годах XIX столетия гальванометра (мультипликатора) и других электроизмерительных приборов физиологи получили возможность точно измерять электрические токи, возникающие в живых тканях, посредством специальных физических приборов.

С помощью мультипликатора К. Маттеучи (1838) впервые показал, что наружная поверхность мышцы заряжена электроположительно по отношению к ее внутреннему содержимому и эта разность потенциалов, свойственная состоянию покоя, резко падает при возбуждении. Маттеучи произвел также опыт, известный под названием опыта вторичного сокращения: при прикладывании к сокращающейся мышце нерва второго нервно-мышечного препарата его мышца тоже сокращается. Опыт Маттеучи объясняется тем, что возникающие в мышце при возбуждении потенциалы действия оказываются достаточно сильными, чтобы вызвать возбуждение приложенного к первой мышце нерва, а это влечет за собой сокращение второй мышцы.

Наиболее полно учение об биоэлектрических явлениях в живых тканях было разработано в 40—50-х годах прошлого столетия Э. Дюбуа-Реймоном. Особой его заслугой является техническая безупречность опытов. С помощью усовершенствованных им и приспособленных для нужд физиологии гальванометра, индукционного аппарата и неполяризующихся электродов Дюбуа-Реймон дал неопровержимые доказательства наличия электрических потенциалов в живых тканях как в покое, так и при возбуждении. На протяжении второй половины XIX и в XX веке техника регистрации биопотенциалов непрерывно совершенствовалась. Так, в 80-х годах прошлого столетия были применены в электрофизиологических исследованиях Н. Е. Введенским телефон, Липпманом— капиллярный электрометр, а в начале нашего столетия В. Эйнтховеном — струнный-гальванометр.

Благодаря развитию электроники физиология  располагает весьма совершенными электроизмерительными приборами, обладающими малой инерционностью (шлейфные осциллографы) и даже практически безынерционными (электронно-лучевые трубки). Необходимая степень усиления биотоков обеспечивается электронными и усилителями переменного и постоянного тока. Разработаны микрофизиологические приемы исследования, позволяющие отводить потенциалы от одиночных нервных и мышечных клеток и нервных волокон. В этом отношении особое значение имеет использование в качестве объекта исследования гигантских нервных волокон (аксонов) головоногого моллюска кальмара. Их диаметр достигает 1 мм, что позволяет вводить внутрь волокна тонкие электроды, перфузировать его растворами различного состава, применять меченые ионы дли изучения ионной проницаемости возбудимой мембраны. Современные представления о механизме возникновения биопотенциалов в значительной мере основаны на данных, полученных в эксперименте на таких аксонах.

   
 
 
Copyright © 2013
Медицинский сайт панель администратора
 
Яндекс.Метрика Рейтинг@Mail.ru
   
Создание сайта Вебцентр